On the distribution of the domination number of a new family of parametrized random digraphs
نویسندگان
چکیده
We derive the asymptotic distribution of the domination number of a new family of random digraph called proximity catch digraph (PCD), which has application to statistical testing of spatial point patterns and to pattern recognition. The PCD we use is a parametrized digraph based on two sets of points on the plane, where sample size and locations of the elements of one is held fixed, while the sample size of the other whose elements are randomly distributed over a region of interest goes to infinity. PCDs are constructed based on the relative allocation of the random set of points with respect to the Delaunay triangulation of the other set whose size and locations are fixed. We introduce various auxiliary tools and concepts for the derivation of the asymptotic distribution. We investigate these concepts in one Delaunay triangle on the plane, and then extend them to the multiple triangle case. The methods are illustrated for planar data, but are applicable in higher dimensions also.
منابع مشابه
The Roman domination and domatic numbers of a digraph
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
متن کاملSpatial Clustering Tests Based on Domination Number of a New Random Digraph Family
We use the domination number of a parametrized random digraph family called proportional-edge proximity catch digraphs (PCDs) for testing multivariate spatial point patterns. This digraph family is based on relative positions of data points from various classes. We extend the results on the distribution of the domination number of proportional-edge PCDs, and use the domination number as a stati...
متن کاملThe Italian domatic number of a digraph
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...
متن کاملA note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
متن کاملTwin signed total Roman domatic numbers in digraphs
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- MASA
دوره 1 شماره
صفحات -
تاریخ انتشار 2006